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We speculate on a generalized dynamics described by an integral over action 
functionals that is a generalization of the standard functional integral. In a 
simple Gaussian case we obtain a certain differential equation for the measure of 
Feynman integral. We prove that the equation is satisfied for the spin zero field 
in one space-time dimension. 

1. INTRODUCTION 

Usually the Lagrangian is considered to be a basic object from which 
all of the dynamics follows; the form of the Lagrangian is normally assumed 
invariable. Here we adopt a different point of view--that the Lagrangian 
may be a dynamical entity subject to a certain equation. If such an equation 
is found it may provide means for systematization of different Lagrangians. 

The stability of Lagrangians with respect to symmetry-breaking per- 
turbations has been discussed recently (Foerster et al., 1980; Iliopulos et al., 
1980). These papers did not consider arbitrary local variation of Lagrangian; 
consequently, the notion of stability used was somewhat special. If one 
wants to discuss stability with respect to arbitrary local variation, one may 
proceed in analogy to the way one defines stability for the solutions of 
Lagrangian equations. There one starts from a variational principle. The 
first variation gives the equation, while positivity of the second variation 
ensures local stability of the solution. Analogously, if one wants to discuss 
local stability of Lagrangian, it would be convenient to start from some kind 
of variational principle. Roughly, stability means here that predictions of 
the theory do not change very much with a small variation of Lagrangian. 

However, we know that the variational principle of classical physics 
could be derived as a quasiclassical approximation to the full quantum 
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problem (Feynman, 1948; Iliopulos et al., 1975). The standard way to derive 
this utilizes a steepest-descent approximation to some functional integrals. 
Likewise, for Lagrangians one may try to define an integral over function- 
als, then proceed with the quasiclassical approximation to find the equation 
that the Lagrangian should satisfy, and finally, check the stability of the 
solution. Here we follow this procedure for the simplest system--a one- 
dimensional scalar field. 

In Section 2 an integral over functionals is defined, while in Section 3 a 
quasiclassical approximation is discussed and a particular solution to the 
resulting equation presented. After a brief discussion of the results, an 
appendix is devoted to the technical question of stability of the integral with 
respect to change of boundaries. 

2. INTEGRAL OVER FUNCTIONALS 

To define an integral over functionals let us recall the relation between 
the ordinary Riemann integral and the functional integral (hereafter we 
denote the former by 11 and the latter by 12, the convenience of this 
notation will be clear shortly). Roughly speaking, in 11 some function f ( x )  

gives a weight with which point x enters the calculation. In the case of the 
functional integral 12 used in quantum field theory, one integrates over f (x ) ,  
the weights of the integral 11. Here point f enters the calculation with the 
weight e iLtf~/h, or with e-LEtf~/~ in the Euclidean version of the theory 
(L E being - i times Lagrangian with Euclidean rotation). It is natural to ask 
the question how to define 13 , and what kind of dynamics (if any) can be 
described by it? 

In defining 13 we rely on analogy with 12; 13 is to 12 as 12 is to 11. Thus 
in the integral 13 we integrate over the weights of 12, i.e., over functionals. 

Since the consideration of the general 13 may be very complicated, to 
get an insight into these ideas we discuss a particular, simple example. 
Consider functionals of bounded functions of one variable, - k ~< ~ ( x )  < 
k , -  T ~  x ~< T. Divide the interval [ - k ,  k] in N subintervals of length e. 
We shall now enumerate integration variables. Divide the interval of possi- 
ble values of function �9 at xi in N units of length e' (a particular division is 
inessential if the continuum limit exists). There are N possible values of �9 at 
x 1, N independent values at x 2, etc., up to x N. We enumerate values of the 
function �9 in the discrete approximation with the set of integers 
( r  1, r 2 . . . . .  rN)  -- r. This r corresponds to function �9 with values r = - k + rte 

at xi. In this approximation there are N N different functions. At each of the 
functions one may have a different value of the functional G r. To integrate 
over all functionals one should integrate separately over values of G taken at 
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different r. Thus one has, before taking the continuum limit, N u integration 
variables. This is analogous to the standard definition of the functional 
integral where one has N integration variables. We define a n  13 by 

13 = f 3Ge - #MtG] 

lim 
N --~ oo 

f ~  dG,..,N I-I B 
l ~ ri <~ N oo 

\ ( l < ~ i < ~ N )  

e-# y" [(Dc, G2)+gG2] e'u 
A N 

r I � 9  r N 

r -  ( q , r  2 .... ,ru), Ne= 2T, Ne '= 2k 

where 

(1) 

M[GI= far162 gG2(r 

is the "hyperaction." Here the coefficient A stands for normalization factor 
of I 2 integral, while B denotes similar factor for 13. To define operator D,~ 
we are again led by the analogy with I2--we take De that is inverse to 
(indefinite) functional integral: 

( D : ) 2  =_ . . .  a c N  
lim d - .  [ J A  A 

N ---* oo 

D!fr <fB~F(~) = F( f ) ,  ~i-r (2) 

Here C is a real constant, determined by the condition that limit N ~ 
exists. We limit the space of functionals G to real functionals; with identi- 
fication of G with the weight of 12 it means that we use Euclidean weights. 

An integral 12 may be restricted at the boundary, here at values of G 
taken at ~ = - k, ~ = k. This restriction determines the boundary condition 
on functional G; it will not be explicitly written here. 

The form of D~ is essential to ensure that 13 is changed infinitesimally 
with the infinitesimal change of the boundary function. This is a necessary 
condition for the existence of N ---, ~ limit; it is discussed, at some length, in 
the appendix. This form of De also enables us to treat the quasiclassical 
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approximation analogously as it is done for ordinary functional integral 
(Feynman, 1948; Iliopulos et al., 1975). 

3. QUASICLASSICAL APPROXIMATION 

To derive an equation for G consider a quasiclassical approximation to 
13 integral. In general, this approximation is justified in the case of low 
effective temperature 1//3. For high/3, the dominant contribution to 13 is 
given by functionals that minimize M[G]. In the particular case of Gaussian 
integral like the one defined in Eq. (1) dependence on/3 is spurious;/3 can 
be scaled away by rescaling of G and the constant B and there are no 
corrections to quasiclassical results (see Iliopulos et al., 1975). 

Taking G ---, G + ~/~(r - q~), - k < q~(x) < k, in M defined by (1) and 
letting 6M = 0 to first order in 7/gives 

D L _ , C ( * ) + g G ( * )  = 0 

Here D~. _ ,  is defined by 

(3) 

D~,_eG(O) = - lim I - I - C  G(~,,q'z . . . . .  Cg) (4) 
N ~  i f f i l  

In the case that 13 is restricted at the boundary Eq. (3) is supplemented by 
appropriate boundary conditions. 

It is clear that acting of D~, _ ,  (and D,) on any finite power of q~, e.g., 
of the form f K ( x  1, x 2 . . . . .  x , )q~(xl)q,(Xz) . . ,  q ~ ( x , ) d x l . . . d x  . gives zero. 
One may look for the solution to Eq. (3) of the form G(q,) = e '~F~*), where F 
may be a finite power of q~ and its derivatives. It seems plausible that 
negative aF(q~) would minimize M, rather than positive. Therefore, having 
in mind that we integrate over the weight of 12, we identify aF(q~) with 
-LE/h. Thus we assume that the whole Feynman measure satisfies Eq. 
(3). We now show that this holds for the spin zero field in one space-time 
dimension, i.e., for the Feynman measure of the one-dimensional quantum 
mechanical particle. 

Let us start with the free, massless field: 

G ( q ~ ) = e x p ( - L e ( q ~ ) / h  ) = e x p [ -  1 r r  / d~ \2  ] 

(5) 
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To calculate D~, _ ~ one may vary independently each q~i by e; and then find 
2 N times the coefficient of the 2 2 e~ e 2. �9 �9 e 2 term in the expansion of 

G(@ 1 -}- i~1, ~) 2 --I- e 2 . . . . .  ~N -ff EN): G(q~l + el . . . . .  ~N --i- EN) 

( = exp 2-he j = 1 A~. 

1 z _ l  2 +  

5'{ 1 1} • exp ~ _ ~-~ j + e-~ej+,ej 
j = 2  

Aj - g + l  - *j (6) 

We assume that the function @ belongs to a space of sufficiently smooth 
functions, specifically, that [ ( A j - A j _ I ) / e ] 2 - - , 0 ;  for this it is sufficient 
that the first derivative exists. [By detailed analysis one can show that 
this condition is not essential for validity of Eq. (3) in this case; the recur- 
sion relation (7) holds asymptotically for k ~ o o  due to the factor 
exp( - 1/2ehEA~), but the calculated constant g may change.] 

Denoting the coefficient of 2 2 e le2--- e~ term by c, and expanding the 
exponent in (6) up to e} and (ej+lej) 2 one obtains, to the leading order in e 
the recursion relation 

__1 dk+l-- ~dk_l + dk, d l = � 8 9  d2 =l 

dk ~ (-- gh )kck (7) 

On defining R k = dk/d k _ 1 one easily shows that R k make rapidly converg- 
ing Cauchy sequence and lim k _. ooRk ----(1 + r This ensures the power 
behavior of c k, 

C k . . . . .  k--,oo 2 

where the last factor 1/2=limk_.~dk/[( l+r k was calculated 
numerically. Power behavior of c, enables us to determine C 2 given by Eq. 
(4), such that D~. _~G(~) exists. [This is not trivial; for example, D,G(q~) 
does not exists.] Taking C 2 = eh/1 +r one obtains 

D~._,exp[__~fr_r(dq~ ] 3 -v~-  ( r 2dx ] -d--xx) 2dx = 4 exp ----~f~T( dq~ (8/ 

With some labor one can see that adding a local self-interaction term to 
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LE(q~ ) does not affect Eq. (8). In effect, adding the term 

f;v(d~)dx= N~I V(d~JJC-~J+l )E 
- j = a  2 

to L e brings in terms of the same order as terms containing A/ in Eq. (6). 
Assuming differentiability of V(~), one can write the recursion relations for 
this case and show that to leading order in e one obtains Eq. (7). Thus Eq. 
(3), with a particular value of g given by (8), is solved by a large class of 
functionals Go; G O = e x p [ - ( 1 / h ) L E ] ,  L E = fr_r[�89162 + V(q~)]dx. 
This large class of solutions to Eq. (3) can be reduced by imposing 
boundary conditions at q~ = +_ k. For example, if one demands G(q~ = k) = 
G(q~ = -  k ) = 1  and G that does not explicitly depend on k, one obtains 
V(q~) = 0 - - a  free massless field. 

4. DISCUSSION 

As one sees from Eq. (8) the solution to Eq. (3) is valid for a particular 
value of g , g = ( r  Constant g is negative, and that 
creates two (related) problems. First, it is not clear that the term (D~G) 2 
suffice for convergence of 13 in this case, and second, G O does not minimize 
M[G] since adding a constant to G O can decrease M; that is, the solution is 
not stable. Imposing boundary conditions on G may alleviate both of these 
problems. First, since G fixed at boundary cannot become overly large 
without making the term (D~,G) 2 large; second, since adding a constant to G 
would spoil boundary conditions. Adding a term of the form fSdpG 4 would 
also alleviate the problems; however, this would change Eq. (3) and finding 
a nontrivial solution would become difficult. 

We have used an 13 integral to derive a possible form of the equation 
for the measure of Feynman integral. However, if one wants to make full 
analogy with the dynamics described by 12 , one would have to integrate all 
standard expressions with respect to G = e -  I-E/h, and to consider invari- 
able L E as a quasiclassical approximation to full expression. Since we 
observe rather constant Lagrangians, it is clear that the parameter/3 should 
be large, i.e., that we are dealing with a low effective "temperature" system. 
It is tempting to speculate further that/3 may represent the inverse tempera- 
ture of the universe, taken in suitable units. Thus one would have an 
ensemble of interactions, of which only the ones that minimize M are visible 
at present. One then may consider models similar to the work of Foester et 
al. and Iliopulos et al. (1980) where minimum of M has the highest 
symmetry. 



Generalization of Lagrangian Dynamics 581 

Another model that one may think of is to use M[G] with more than 
one minimum. Expanding about each minimum one would get free 
Lagrangians, while tunneling may describe interactions. In this manner one 
may describe different particles by one field. 

APPENDIX 

If the integral 13 exists, it should change infinitesimally with the 
infinitesimal change of the function where the boundary condition on G is 
imposed. Impose a boundary condition of the form G/, = G 2, where f2 is 
given by fz(x~)= - T +  N,.e'. Here we are using an arbitrary, nonconstant 
function f2--analogous derivation can be given for fl.  In the discrete 
notation the boundary condition is written GN, u:...u,v = G2 and one does not 
integrate over this variable. We write operator D, in the discrete notation: 

ajCr,  r,=..r = --  O r , . . . , , -  X..-,,, 

With this we define 13 by 

I3(f2'Gz)- lim ( I-I' f dGr'r:''ru N..-,oo rk~N!, B 
N,--*oo 

( A 1 )  

Here II '  means that we exclude the term with all the indices at the highest 
value, i.e., u N Y~k=lrk < F..k= 1N k. 

Now we derive the relation between variables G, and (1--Ij<NSj)G ,. 
Define G r with any index r~=0 to be certain constant G1, that is, 
8iGr, .... ,=l""rN = Grl""r,=l""rN- Gx. Then one can show 

Gr, r2...rN =G, + E ( I-[ 6j)Gr, (A2) 
r,<~6~j<~N / 

This can be shown by induction in the number of dimensions of the vector 
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r. For one dimensional r one has 

E (ns,)G,,= g ,~G,~=(C,-Gr,_,) 
r,'~< I", ri'~< r 1 

-I-(Grl_l-Gr,_ 2) + ""(Gr,= I - G 1 )  

= G,.- G i 

Using the formula for k-dimensional r one easily goes to (k + 1)-dimensional 
r. From (A2) follows 

Grl...rj=Ns+X...rN=Grl...G=Ns...r.~ -t- E .  ~lv r'I-'''j)Gr" (A3) 
r~'= N, + 1 
C+s ~< r, 

One can also show, using the induction in the number of dimensions of 
r, that the Jacobian of the transformation from G r to (I-Ij~ m6j)Gr is 1. 

If one changes infinitesimally the function f2 by 

f 2 ( x i )  -~ f 2 ' ( x i )  = - T +  N i e ' +  6ise' 

or in the discrete notation 

r~-+ri~=(Ul,U~'"U,+l ..... NN) 
the induced change in 13 must be of the order t': 

I3 (f2', G2) 

(s )s , ,  
lim 1-[' 

N ~ oo rk <~ N k 
N , - " , ~  rs= Ns + l 

d G r  I . . .  N s + 1 . .  �9 r,v 

B 

xe• ~C 
r s f  N ,  + l 

Xex,( o , o2 

(A4) 

As e'---> 0 left side of this equation tends to 13(f2, G2)- To ensure that the 
right side tends to expression given by (A1) one needs a set of 6 functions: 
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~(artr2...N,+l...rN -- ar, r2...Ns...rN), ri~ s ~ N i. This is provided by the term 

exp[  -~ErsffiNs+l ( [ ( j ~ < ~ N C ~ ) a r ] 2 ) ( ~ )  N) 

r,~,s < Nj 

Here to zeroth order in e' the term gG, z does not contribute. By changing the 
variables from 

Gr I "'N,+ I'"r'NGN, ...Ns...N N 

to 

Yrl...Ns+l...rN= (I-I~j)arl...Ns+l...rN 

one shows that normalization of the 8 functions requires 

= 

h s , ) s ]  1/2 

The condition GN,... N, + 1.-.Uu = G, becomes 

GN I'''Ns'''N N : G2 @ E Yr(...N~+ l'"r'u 
ri'~ , <~ N, 

r'=Ns+l 

In the integral y's are of the order (e'A) u/2. In the correction the liner term 
in y vanishes due to parity of the Gaussian and the correction is, indeed, of 
the order e'. This is analogous to the derivation of the Schrbdinger equation 
from the functional integral (Feynman, 1948). However, here the first-order 
correction does not give closed equation for I3(f2, Gz)--it only expresses it 
through another 13 . 
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